интернет вещей

ОСОБЕННОСТИ МУЛЬТИСЕРВИСНОГО ТРАФИКА с учетом сообщений, создаваемых устройствами ІоТ

В.Зайцев, аспирант СПбГУТ / zaitsev_v@protei.ru **Н.Соколов**, д.т.н., директор по науке ООО "ПРОТЕЙ СпецТехника"

УДК 621.391

Современные телекоммуникационные сети обслуживают в основном мультисервисный трафик, представленный в виде IP-пакетов. Он существенно отличается от телефонной нагрузки, а дополнительные изменения порождает реализация концепции, получившей название "Интернет вещей". Данная статья посвящена обсуждению возникающих задач.

Введение

Концепция "Интернет вещей" (Internet of Things, IoT) – одно из самых обсуждаемых направлений развития телекоммуникационных сетей и информационных систем. Она изучается также специалистами, работающими в различных сферах человеческой деятельности – здравоохранения, безопасности, жилищно-коммунального хозяйства и др. [1, 2]. Круг вопросов, которые представляют теоретический и практический интерес, весьма широк.

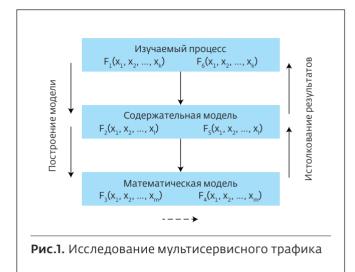
Телекоммуникационная сеть должна развиваться так, чтобы обеспечивались все необходимые условия для практического применения концепции "Интернета вещей". Одним из таких условий следует считать обслуживание мультисервисного трафика с заданными качественными показателями. Этот трафик можно рассматривать как результат сложения двух компонентов, представляющих потоки IP-пакетов разной природы. Первый компонент иногда называют трафиком людей (пользователем, как правило, становится человек), второй – это

трафик вещей, создаваемый при реализации концепции IoT.

Свойства первого компонента активно изучаются специалистами по теории телетрафика на основании теоретических моделей и результатов измерений в эксплуатируемых мультисервисных сетях. Исследование второго компонента усложняется тем, что пока сложно прогнозировать характер роста трафика IoT с необходимой достоверностью [3]. Правда, зависимость от недостаточности объема статистической информации можно снизить, используя сценарный подход [4]. Подобное решение не накладывает ограничений на изучение особенностей мультисервисного трафика, в состав которого входят сообщения, создаваемые оконечными устройствами IoT.

ПРОЦЕСС ИССЛЕДОВАНИЯ МУЛЬТИСЕРВИСНОГО ТРАФИКА

На характеристики мультисервисного трафика влияет множество факторов, но при проведении исследований учитывается только часть из них. Такой подход – общепринятая практика, объясняемая в том числе рядом объективных и субъективных причин. В результате неизбежны ошибки, источники которых можно проследить на примере, приведенном в [5], для решения задачи при помощи модели (рис.1). Изучаемый процесс в данной статье – обслуживание мультисервисного трафика.


Предположим, что характеристики трафика (атрибуты изучаемого процесса) можно адекватно представить функцией $F_1(x_1,\ x_2,\ ...,\ x_k)$. Совокупность переменных $x_i,\ i=\overline{l,k},$ образует набор параметров, адекватно характеризующих предмет исследований. При переходе к блоку "Содержательная модель" ряд переменных, как правило, исключается из дальнейшего исследования по причинам объективного и субъективного характера. Это означает, что l>k. Меняется, естественно, и вид исходной функции, что отображает запись $F_2(x_1,\ x_2,\ ...,\ x_l)$.

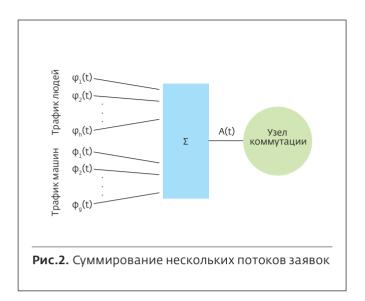
При переходе к блоку "Математическая модель" также меняется совокупность анализируемых переменных. Возможны варианты и $l \le m$, и $l \ge m$. В результате исследования функция $F_3(x_1, x_2, ..., x_m)$ приводится к виду, который обозначен как $F_4(x_1, x_2, ..., x_m)$. Различие этих функций определяет ошибку, возникающую при исследовании математической модели.

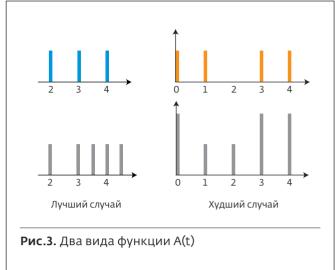
В процессе истолкования результатов исследования модели формируются две функции – $F_5(x_1, x_2, ..., x_l)$ и $F_6(x_1, x_2, ..., x_k)$. Различия функций $F_2(x_1, x_2, ..., x_l)$ и $F_5(x_1, x_2, ..., x_l)$, а также $F_1(x_1, x_2, ..., x_k)$ и $F_6(x_1, x_2, ..., x_k)$ служат мерами ошибок, возникающих в блоках "Содержательная модель" и "Изучаемый процесс" соответственно.

Каждый IP-пакет, с точки зрения теории телетрафика, следует рассматривать как заявку, которая должна быть обслужена – передана, принята или обработана. Исчерпывающей характеристикой потока IP-пакетов случит функция распределения длительности интервалов между моментами поступления заявок [6]. Для иллюстрации, приведенной на рисунке 1, это распределение представляет собой функцию $F_1(x_1, x_2, ..., x_k)$.

Допустим, что при переходе к содержательной модели исключаются из дальнейшего анализа отсутствие стационарности и свойство ординарности входящего потока заявок [6]. Эти допущения позволяют упростить получение функции $F_2(x_1, x_2, ..., x_l)$. Если она оценивается при помощи измерений через интервал τ , то результат представим ступенчатой функцией с приращениями P_i в точках іт. Величина і принимает целочисленные значения в диапазоне от 0 до τ 0 до τ 1. Точность оценки функции τ 2(τ 1, τ 2, ..., τ 1), вследствие конечного значения интервала τ 1, снижается.

В теории телетрафика полученную ступенчатую функцию обычно аппроксимируют непрерывной кривой, используя, например, метод наименьших квадратов. Эта кривая и служит функцией $F_3(x_1, x_2, ..., x_m)$. Для телефонного трафика часто использовалась гипотеза о пуассоновском потоке заявок [6]. Это упрощает исследуемую функцию, так как она зависит только от интенсивности потока заявок λ и времени t:


$$F_3(x_1, x_2, ..., x_m) = 1 - e^{-\lambda t}$$
 (1)


Понятно, что возникающая ошибка будет обусловлена рядом факторов, среди которых уместно выделить обстоятельство следующего рода: измеряемая функция определена на отрезке $[0, N\tau]$, а аппроксимирующая кривая – в диапазоне $[0, \infty)$.

Оценка характеристик потока ІР-пакетов

На рисунке 2 показана модель формирования потока IP-пакетов на входе узла коммутации. Операция сложения IP-пакетов, поступающих из разных источников, осуществляется в рассматриваемой модели в гипотетическом блоке, который обозначен символом " Σ ". Этот блок можно рассматривать как буферную память на входе узла коммутации.

Предполагается, что для обоих классов трафика (людей и вещей) известны функции распределения длительности интервалов между моментами поступления заявок – $\varphi_i(t)$, $i=\overline{l}$, \overline{h} , и $\varphi_j(t)$, $j=\overline{l}$, \overline{g} соответственно. На выходе суммирующего устройства формируется поток заявок, которые должны быть обработаны узлом коммутации. Для этого потока необходимо определить вид функции распределения A(t) и ее параметры. Данная задача легко решается для распределений $\varphi_i(t)$ и $\varphi_j(t)$ вида (1), но оно не представляет

практического интереса для исследования моделей мультисервисного трафика.

Для произвольных законов распределения $\varphi_i(t)$ и $\varphi_j(t)$ несложно оценить интенсивность входящего потока заявок Λ . Если для обоих классов трафика величины интенсивности входящих потоков λ_i^{φ} и λ_j^{φ} известны, то справедливо следующее неравенство:

$$\Lambda \leq \sum_{i=1}^{h} \lambda_{i}^{\varphi} + \sum_{j=1}^{g} \lambda_{j}^{\varphi}$$
 (2)

Знак неравенства подчеркивает тот факт, что часть заявок может быть потеряна вследствие ограниченного объема буферной памяти. Современные требования к величине вероятности потери таковы, что в соотношении (2) можно поставить знак равенства. Такой подход представляется разумным и по той причине, что использование в дальнейших расчетах величины Λ , как суммы всех значения λ_i^{φ} и λ_j^{φ} , позволит получить верхнюю границу необходимой производительности узлов коммутации в составе телекоммуникационной сети.

Часто входящие потоки заданы моментами поступления заявок, которые удобно выразить целыми числами, равными отношению текущего времени t к некому малому периоду х. Это позволяет найти диаметрально противоположные законы поступления заявок для суммарного потока. Их можно назвать "лучшим" и "худшим".

Данное утверждение можно проиллюстрировать при помощи модели, для которой определены законы поступления заявок для двух потоков – $n_1(t)$ и $n_1(t)$. В верхней части рисунка 3 показаны соответствующие гистограммы. Потоки предполагаются ординарными [6]. В нижней части рисунка проиллюстрированы два закона поступления заявок для суммарного

потока. Они соответствуют диаметрально противоположным случаям.

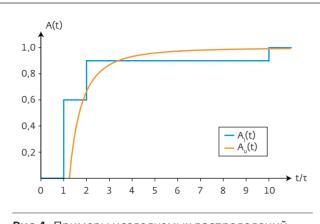
Для "лучшего" случая сохраняется ординарность, а смежные заявки находятся на расстоянии друг от друга, равном не менее 0,5. Для "худшего" случая ординарность нарушается - в моменты времени 0, 3 и 4 приходят сразу две заявки. Это происходит при непреднамеренной "синхронизации" двух входящих потоков. Определения "лучший" и "худший" использованы для того, чтобы акцентировать внимание на следующем факте: характеристики качества обслуживания трафика при заданной величине пропускной способности узла коммутации для рассматриваемых случаев могут сравниваться при помощи этих прилагательных. К сожалению, не всегда удается установить зависимость между законом поступления заявок и соответствующим распределением A(t).

Исследуемые распределения A(t)

В технической литературе, посвященной трафику мультисервисных сетей, чаще других исследуются распределения A(t) с так называемыми тяжелыми хвостами [6]. Эти функции определены на оси $[x_0, \infty)$. В статье [7] рассматривается также пример распределения, заданного на ограниченном интервале. Подобные распределения обозначаются в [7] как $A_l(t)$. Нижний индекс "l" – первая буква в слове "limited", что означает ограниченный. Тогда распределения, для которых область определения справа не ограничена, логично записать как $A_u(t)$. Нижний индекс "u" – первая буква в слове "unlimited", которое переводится как неограниченный. Эти же индексы уместно использовать для средних значений $A_l^{(1)}$ и $A_u^{(1)}$, а также дисперсий σ_l^2 и σ_u^2 соответственно.

Интерес к распределениям класса $A_l(t)$ обусловлен тремя основными факторами. Во-первых, измерения входящего потока IP-пакетов показывают, что часто наблюдаются длительные периоды, в течение которых "тяжелые хвосты" отсутствуют. Во-вторых, как отмечено в [7], при соблюдении равенств $A_l^{(1)} = A_u^{(1)}$ и $\sigma_l^2 = \sigma_u^2$ распределения $A_l(t)$ позволяют получить верхние границы для длительности задержки заявок. В третьих, часть IP-пакетов, порожденных "Интернетом вещей", будет передаваться по расписанию, что не соответствует моделям трафика с распределениями класса $A_u(t)$.

На рисунке 4 показаны графики для двух распределений из классов $A_{\rm u}(t)$ и $A_{\rm l}(t)$. В качестве примеров использованы распределение Парето [8] и ступенчатая функция произвольного вида соответственно. Параметры распределений $A_{\rm u}(t)$ и $A_{\rm l}(t)$ выбраны таким образом, чтобы соблюдались условия: $A_{\rm l}^{(1)} = A_{\rm u}^{(1)}$ и $\sigma_{\rm l}^2 = \sigma_{\rm u}^2$. Распределение $A_{\rm l}(t)$ имеет только три приращения – в точках τ , 2τ и 10τ с величинами $P_{\rm l} = 0,6, P_{\rm l} = 0,3$ и $P_{\rm l0} = 0,1$. Тогда для распределения Парето несложно вычислить параметры положения и формы [8]: $x_{\rm l} \approx 1,244$ и $\alpha \approx 2,302$. Для распределения $A_{\rm l}(t)$ значение τ принято равным единице.


Рассмотрим однолинейную систему телетрафика с постоянным временем обслуживания заявок. Для загрузки системы, равной 0,9, путем имитационного моделирования были получены следующие результаты:

- среднее значения времени задержки заявок составляет 5,8 и 14,9 для распределений A₁₁(t) и A₁(t);
- коэффициент вариации времени задержки заявок составляет примерно 0,7 и 0,9 для распределений $A_{11}(t)$ и $A_{1}(t)$.

Результаты моделирования, проведенные для моделей, отличающихся от выбранных в [7], подтверждают вывод о том, что применение распределений вида $A_{\rm I}(t)$ позволяет получить верхние границы для параметров времени задержки заявок. В качестве такой функции можно использовать, например, бета-распределение [8]. Оно, в частности, было выбрано в [7] для исследования входящего трафика в узлах коммутации пакетных сетей.

ЗАКЛЮЧЕНИЕ

При исследовании мультисервисного трафика следует учитывать возможное изменение его характера по мере увеличения количества оконечных устройств, посредством которых реализуется концепция "Интернет вещей". В течение ближайших лет объем дополнительных IP-пакетов, относящихся к трафику Интернета вещей, будет не столь существенен. С другой стороны, необходимо рассматривать

Рис.4. Примеры исследуемых распределений Au(t) и Al(t)

также и сценарии развития Интернета вещей, подразумевающие значительный рост соответствующего трафика в обозримой перспективе [3].

Особый интерес при исследовании мультисервисного трафика представляют собой те распределения длительности интервалов между моментами поступления IP-пакетов, которые определены на конечном интервале времени. Изучение подобных распределений порождает новый класс задач в теории телетрафика, имеющих практическое значение.

ЛИТЕРАТУРА

- 1. **Hersent O., Boswarthick D., Elloumi O.** The Internet of Things: Key Applications and Protocols, 2nd Edition. Wiley, 2012, 370 p.
- 2. Росляков А.В., Ваняшин С.В., Гребешков А.Ю., Самсонов М.Ю., Интернет вещей. Самара: ПГУ-ТИ, ООО "Издательство Ас Гард", 2014, 340 с.
- 3. **Соколов Н.А.** Сценарии реализации концепции "Интернет вещей". Первая миля, 2016, №4, с. 50–54.
- 4. Линдгрен М., Бандхольд Х. Сценарное планирование. Связь между будущим и стратегией. М.: Олимп-Бизнес, 2009, 256 с.
- 5. **Мышкис А.Д.** Элементы теории математических моделей. М.: Книжный дом "Либриком", 2011, 192 с.
- 6. **Степанов С.Н.** Теория телетрафика: концепции, модели, приложения. М.: Горячая линия Телеком, 2015, 867 с.
- 7. **Levakov A.K., Sokolov A.N., Sokolov N.A.** Models of incoming traffic in packet networks. T-Comm, 2015, Vol. 9, №5, pp. 91–94.
- 8. **Вадзинский Р.Н.** Справочник по вероятностным распределениям. СПб.: Наука, 2001, 296 с.